Source code for gnnwr.networks

import math
import torch
import torch.nn as nn


[docs] def default_dense_layer(insize, outsize): """ generate default dense layers for neural network Parameters ---------- insize: int input size of neural network outsize: int output size of neural network Returns ------- dense_layer: list a list of dense layers of neural network """ dense_layer = [] size = int(math.pow(2, int(math.log2(insize)))) while size > outsize: dense_layer.append(size) size = int(math.pow(2, int(math.log2(size)) - 1)) return dense_layer
[docs] class SWNN(nn.Module): """ SWNN is a neural network with dense layers, which is used to calculate the spatial and temporal weight of features. | The each layer of SWNN is as follows: | full connection layer -> batch normalization layer -> activate function -> drop out layer Parameters ---------- dense_layer: list a list of dense layers of Neural Network insize: int input size of Neural Network(must be positive) outsize: int Output size of Neural Network(must be positive) drop_out: float drop out rate(default: ``0.2``) activate_func: torch.nn.functional activate function(default: ``nn.PReLU(init=0.1)``) batch_norm: bool whether use batch normalization(default: ``True``) """ def __init__(self, dense_layer=None, insize=-1, outsize=-1, drop_out=0.2, activate_func=nn.PReLU(init=0.1), batch_norm=True): super(SWNN, self).__init__() if dense_layer is None or len(dense_layer) == 0: self.dense_layer = default_dense_layer(insize, outsize) else: self.dense_layer = dense_layer if insize < 0 or outsize < 0: raise ValueError("insize and outsize must be positive") self.drop_out = drop_out self.batch_norm = batch_norm self.activate_func = activate_func self.insize = insize self.outsize = outsize count = 0 # used to name layers lastsize = self.insize # used to record the size of last layer self.fc = nn.Sequential() for size in self.dense_layer: self.fc.add_module("swnn_full" + str(count), nn.Linear(lastsize, size, bias=True)) # add full connection layer if batch_norm: # add batch normalization layer if needed self.fc.add_module("swnn_batc" + str(count), nn.BatchNorm1d(size)) self.fc.add_module("swnn_acti" + str(count), self.activate_func) # add activate function self.fc.add_module("swnn_drop" + str(count), nn.Dropout(self.drop_out)) # add drop_out layer lastsize = size # update the size of last layer count += 1 self.fc.add_module("full" + str(count), nn.Linear(lastsize, self.outsize)) # add the last full connection layer for m in self.modules(): if isinstance(m, nn.Linear): torch.nn.init.kaiming_uniform_(m.weight, a=0, mode='fan_in') if m.bias is not None: m.bias.data.fill_(0)
[docs] def forward(self, x): x.to(torch.float32) x = self.fc(x) return x
[docs] class STPNN(nn.Module): """ STPNN is a neural network with dense layers, which is used to calculate the spatial and temporal proximity of two nodes. | The each layer of STPNN is as follows: | full connection layer -> batch normalization layer -> activate function -> drop out layer Parameters ---------- dense_layer: list a list of dense layers of Neural Network insize: int input size of Neural Network(must be positive) outsize: int Output size of Neural Network(must be positive) drop_out: float drop out rate(default: ``0.2``) activate_func: torch.nn.functional activate function(default: ``nn.ReLU()``) batch_norm: bool whether use batch normalization(default: ``False``) """ def __init__(self, dense_layer, insize, outsize, drop_out=0.2, activate_func=nn.ReLU(), batch_norm=False): super(STPNN, self).__init__() # default dense layer self.dense_layer = dense_layer self.drop_out = drop_out self.batch_norm = batch_norm self.activate_func = activate_func self.insize = insize self.outsize = outsize count = 0 # used to name layers lastsize = self.insize # used to record the size of last layer self.fc = nn.Sequential() for size in self.dense_layer: self.fc.add_module("stpnn_full" + str(count), nn.Linear(lastsize, size)) # add full connection layer if batch_norm: # add batch normalization layer if needed self.fc.add_module("stpnn_batc" + str(count), nn.BatchNorm1d(size)) self.fc.add_module("stpnn_acti" + str(count), self.activate_func) # add activate function self.fc.add_module("stpnn_drop" + str(count), nn.Dropout(self.drop_out)) # add drop_out layer lastsize = size # update the size of last layer count += 1 self.fc.add_module("full" + str(count), nn.Linear(lastsize, self.outsize)) # add the last full connection layer self.fc.add_module("acti" + str(count), nn.ReLU()) for m in self.modules(): if isinstance(m, nn.Linear): torch.nn.init.kaiming_uniform_(m.weight) if m.bias is not None: m.bias.data.fill_(0)
[docs] def forward(self, x): # STPNN x.to(torch.float32) batch = x.shape[0] height = x.shape[1] x = torch.reshape(x, shape=(batch * height, x.shape[2])) output = self.fc(x) output = torch.reshape(output, shape=(batch, height * self.outsize)) return output
[docs] class STNN_SPNN(nn.Module): """ STNN_SPNN is a neural network with dense layers, which is used to calculate the spatial proximity of two nodes and temporal proximity of two nodes at the same time. | The each layer of STNN and SPNN is as follows: | full connection layer -> activate function Parameters ---------- STNN_insize: int input size of STNN(must be positive) STNN_outsize: int Output size of STNN(must be positive) SPNN_insize: int input size of SPNN(must be positive) SPNN_outsize: int Output size of SPNN(must be positive) activate_func: torch.nn.functional activate function(default: ``nn.ReLU()``) """ def __init__(self, STNN_insize:int, STNN_outsize, SPNN_insize:int, SPNN_outsize, activate_func=nn.ReLU()): super(STNN_SPNN, self).__init__() self.STNN_insize = STNN_insize self.STNN_outsize = STNN_outsize self.SPNN_insize = SPNN_insize self.SPNN_outsize = SPNN_outsize self.activate_func = activate_func self.STNN = nn.Sequential(nn.Linear(self.STNN_insize, self.STNN_outsize), self.activate_func) self.SPNN = nn.Sequential(nn.Linear(self.SPNN_insize, self.SPNN_outsize), self.activate_func)
[docs] def forward(self, input1): STNN_input = input1[:, :, self.SPNN_insize:] SPNN_input = input1[:, :, 0:self.SPNN_insize] STNN_output = self.STNN(STNN_input) SPNN_output = self.SPNN(SPNN_input) output = torch.cat((STNN_output, SPNN_output), dim=-1) return output
# 权共享计算
[docs] def weight_share(model, x, output_size=1): """ weight_share is a function to calculate the output of neural network with weight sharing. Parameters ---------- model: torch.nn.Module neural network with weight sharing x: torch.Tensor input of neural network output_size: int output size of neural network Returns ------- output: torch.Tensor output of neural network """ x.to(torch.float32) batch = x.shape[0] height = x.shape[1] x = torch.reshape(x, shape=(batch * height, x.shape[2])) output = model(x) output = torch.reshape(output, shape=(batch, height, output_size)) return output