import datetime
import os
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import warnings
from sklearn.metrics import r2_score
from torch.utils.tensorboard import SummaryWriter # 用于保存训练过程
from tqdm import trange
from collections import OrderedDict
import logging
from .networks import SWNN, STPNN, STNN_SPNN
from .utils import OLS, DIAGNOSIS
# 23.6.8_TODO: 寻找合适的优化器 考虑SGD+学习率调整 输出权重
[docs]
class GNNWR:
r"""
GNNWR(Geographically neural network weighted regression) is a model to address spatial non-stationarity in various domains with complex geographical processes,
which comes from the paper `Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity <https://doi.org/10.1080/13658816.2019.1707834>`__.
Parameters
----------
train_dataset : baseDataset
the dataset of training
valid_dataset : baseDataset
the dataset of validation
test_dataset : baseDataset
the dataset of testing
dense_layers : list
the dense layers of the model (default: ``None``)
Default structure is a geometric sequence of power of 2, the minimum is 2, and the maximum is the power of 2 closest to the number of neurons in the input layer.
i.e. ``[2,4,8,16,32,64,128,256]``
start_lr : float
the start learning rate of the model (default: ``0.1``)
optimizer : str, optional
the optimizer of the model (default: ``"Adagrad"``)
choose from "SGD","Adam","RMSprop","Adagrad","Adadelta"
drop_out : float
the drop out rate of the model (default: ``0.2``)
batch_norm : bool, optional
whether use batch normalization (default: ``True``)
activate_func : torch.nn
the activate function of the model (default: ``nn.PReLU(init=0.4)``)
model_name : str
the name of the model (default: ``"GNNWR_" + datetime.datetime.today().strftime("%Y%m%d-%H%M%S")``)
model_save_path : str
the path of the model (default: ``"../gnnwr_models"``)
write_path : str
the path of the log (default: ``"../gnnwr_runs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")``)
use_gpu : bool
whether use gpu or not (default: ``True``)
use_ols : bool
whether use ols or not (default: ``True``)
log_path : str
the path of the log (default: ``"../gnnwr_logs/"``)
log_file_name : str
the name of the log (default: ``"gnnwr" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + ".log"``)
log_level : int
the level of the log (default: ``logging.INFO``)
optimizer_params : dict, optional
the params of the optimizer and the scheduler (default: ``None``)
if optimizer is SGD, the params are:
| maxlr: float, the max learning rate (default: ``0.1``)
| minlr: float, the min learning rate (default: ``0.01``)
| upepoch: int, the epoch of learning rate up (default: ``10000``)
| decayepoch: int, the epoch of learning rate decay (default: ``20000``)
| decayrate: float, the rate of learning rate decay (default: ``0.1``)
| stop_change_epoch: int, the epoch of learning rate stop change (default: ``30000``)
| stop_lr: float, the learning rate when stop change (default: ``0.001``)
if optimizer is Other, the params are:
| scheduler: str, the name of the scheduler (default: ``"CosineAnnealingWarmRestarts"``) in {``"MultiStepLR","CosineAnnealingLR","CosineAnnealingWarmRestarts"``}
| scheduler_milestones: list, the milestones of the scheduler MultiStepLR (default: ``[500,1000,2000,4000]``)
| scheduler_gamma: float, the gamma of the scheduler MultiStepLR (default: ``0.5``)
| scheduler_T_max: int, the T_max of the scheduler CosineAnnealingLR (default: ``1000``)
| scheduler_eta_min: float, the eta_min of the scheduler CosineAnnealingLR and CosineAnnealingWarmRestarts (default: ``0.01``)
| scheduler_T_0: int, the T_0 of the scheduler CosineAnnealingWarmRestarts (default: ``100``)
| scheduler_T_mult: int, the T_mult of the scheduler CosineAnnealingWarmRestarts (default: ``3``)
"""
def __init__(
self,
train_dataset,
valid_dataset,
test_dataset,
dense_layers=None,
start_lr: float = .1,
optimizer="Adagrad",
drop_out=0.2,
batch_norm=True,
activate_func=nn.PReLU(init=0.4),
model_name="GNNWR_" + datetime.datetime.today().strftime("%Y%m%d-%H%M%S"),
model_save_path="../gnnwr_models",
write_path="../gnnwr_runs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
use_gpu: bool = True,
use_ols: bool = True,
log_path="../gnnwr_logs/",
log_file_name="gnnwr" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + ".log",
log_level=logging.INFO,
optimizer_params=None
):
self._train_dataset = train_dataset # train dataset
self._valid_dataset = valid_dataset # valid dataset
self._test_dataset = test_dataset # test dataset
self._dense_layers = dense_layers # structure of layers
self._start_lr = start_lr # initial learning rate
self._insize = train_dataset.datasize # size of input layer
self._outsize = train_dataset.coefsize # size of output layer
self._writer = SummaryWriter(write_path) # summary writer
self._drop_out = drop_out # drop_out ratio
self._batch_norm = batch_norm # batch normalization
self._activate_func = activate_func # activate function , default: PRelu(0.4)
self._model = SWNN(self._dense_layers, self._insize, self._outsize,
self._drop_out, self._activate_func, self._batch_norm) # model
self._log_path = log_path # log path
self._log_file_name = log_file_name # log file
self._log_level = log_level # log level
self.__istrained = False # whether the model is trained
self._weight = OLS(
train_dataset.scaledDataframe, train_dataset.x, train_dataset.y).params # OLS for weight
self._out = nn.Linear(
self._outsize, 1, bias=False) # layer to multiply weight,coefficients, and model output
if use_ols:
self._out.weight = nn.Parameter(torch.tensor([self._weight]).to(
torch.float32), requires_grad=False) # define the weight
else:
self._out.weight = nn.Parameter(torch.tensor(np.ones((1, self._outsize))).to(
torch.float32), requires_grad=False) # define the weight
self._criterion = nn.MSELoss() # loss function
self._trainLossList = [] # record the loss in training process
self._validLossList = [] # record the loss in validation process
self._epoch = 0 # current epoch
self._bestr2 = float('-inf') # best r2
self._besttrainr2 = float('-inf') # best train r2
self._noUpdateEpoch = 0 # number of epochs without update
self._modelName = model_name # model name
self._modelSavePath = model_save_path # model save path
self._train_diagnosis = None # diagnosis of training
self._test_diagnosis = None # diagnosis of test
self._valid_r2 = None # r2 of validation
self.result_data = None
self._use_gpu = use_gpu
if self._use_gpu:
if torch.cuda.is_available():
devices = [i for i in range(torch.cuda.device_count())]
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(map(str, devices))
else:
self._use_gpu = False
self._optimizer = None
self._scheduler = None
self._optimizer_name = None
self.init_optimizer(optimizer, optimizer_params) # initialize the optimizer
[docs]
def init_optimizer(self, optimizer, optimizer_params=None):
r"""
initialize the optimizer
Parameters
----------
optimizer : str
the optimizer of the model (default: ``"Adagrad"``)
choose from "SGD","Adam","RMSprop","Adagrad","Adadelta"
optimizer_params : dict, optional
the params of the optimizer and the scheduler (default: ``None``)
if optimizer is SGD, the params are:
| maxlr: float, the max learning rate (default: ``0.1``)
| minlr: float, the min learning rate (default: ``0.01``)
| upepoch: int, the epoch of learning rate up (default: ``10000``)
| decayepoch: int, the epoch of learning rate decay (default: ``20000``)
| decayrate: float, the rate of learning rate decay (default: ``0.1``)
| stop_change_epoch: int, the epoch of learning rate stop change (default: ``30000``)
| stop_lr: float, the learning rate when stop change (default: ``0.001``)
if optimizer is Other, the params are:
| scheduler: str, the name of the scheduler (default: ``"CosineAnnealingWarmRestarts"``) in {``"MultiStepLR","CosineAnnealingLR","CosineAnnealingWarmRestarts"``}
| scheduler_milestones: list, the milestones of the scheduler MultiStepLR (default: ``[500,1000,2000,4000]``)
| scheduler_gamma: float, the gamma of the scheduler MultiStepLR (default: ``0.5``)
| scheduler_T_max: int, the T_max of the scheduler CosineAnnealingLR (default: ``1000``)
| scheduler_eta_min: float, the eta_min of the scheduler CosineAnnealingLR and CosineAnnealingWarmRestarts (default: ``0.01``)
| scheduler_T_0: int, the T_0 of the scheduler CosineAnnealingWarmRestarts (default: ``100``)
| scheduler_T_mult: int, the T_mult of the scheduler CosineAnnealingWarmRestarts (default: ``3``)
"""
# initialize the optimizer
if optimizer == "SGD":
self._optimizer = optim.SGD(
self._model.parameters(), lr=1, momentum=0.9, weight_decay=1e-3)
elif optimizer == "Adam":
self._optimizer = optim.Adam(
self._model.parameters(), lr=self._start_lr, weight_decay=1e-3)
elif optimizer == "RMSprop":
self._optimizer = optim.RMSprop(
self._model.parameters(), lr=self._start_lr)
elif optimizer == "Adagrad":
self._optimizer = optim.Adagrad(
self._model.parameters(), lr=self._start_lr)
elif optimizer == "Adadelta":
self._optimizer = optim.Adadelta(
self._model.parameters(), lr=self._start_lr)
else:
raise ValueError("Invalid Optimizer")
self._optimizer_name = optimizer # optimizer name
# lr scheduler
if self._optimizer_name == "SGD":
if optimizer_params is None:
optimizer_params = {}
maxlr = optimizer_params.get("maxlr", 0.1)
minlr = optimizer_params.get("minlr", 0.01)
upepoch = optimizer_params.get("upepoch", 10000)
uprate = (maxlr - minlr) / upepoch * (upepoch // 20)
decayepoch = optimizer_params.get("decayepoch", 20000)
decayrate = optimizer_params.get("decayrate", 0.1)
stop_change_epoch = optimizer_params.get("stop_change_epoch", 30000)
stop_lr = optimizer_params.get("stop_lr", 0.001)
lamda_lr = lambda epoch: (epoch // (upepoch // 20)) * uprate + minlr if epoch < upepoch else (
maxlr if epoch < decayepoch else maxlr * (decayrate ** (epoch - decayepoch))) if epoch < stop_change_epoch else stop_lr
self._scheduler = optim.lr_scheduler.LambdaLR(
self._optimizer, lr_lambda=lamda_lr)
else:
if optimizer_params is None:
optimizer_params = {}
scheduler = optimizer_params.get("scheduler", "CosineAnnealingWarmRestarts")
scheduler_milestones = optimizer_params.get(
"scheduler_milestones", [500, 1000, 2000, 4000])
scheduler_gamma = optimizer_params.get("scheduler_gamma", 0.5)
scheduler_T_max = optimizer_params.get("scheduler_T_max", 1000)
scheduler_eta_min = optimizer_params.get("scheduler_eta_min", 0.01)
scheduler_T_0 = optimizer_params.get("scheduler_T_0", 100)
scheduler_T_mult = optimizer_params.get("scheduler_T_mult", 3)
if scheduler == "MultiStepLR":
self._scheduler = optim.lr_scheduler.MultiStepLR(
self._optimizer, milestones=scheduler_milestones, gamma=scheduler_gamma)
elif scheduler == "CosineAnnealingLR":
self._scheduler = optim.lr_scheduler.CosineAnnealingLR(
self._optimizer, T_max=scheduler_T_max, eta_min=scheduler_eta_min)
elif scheduler == "CosineAnnealingWarmRestarts":
self._scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
self._optimizer, T_0=scheduler_T_0, T_mult=scheduler_T_mult, eta_min=scheduler_eta_min)
else:
raise ValueError("Invalid Scheduler")
def __train(self):
"""
train the network
"""
self._model.train() # set the model to train mode
train_loss = 0 # initialize the loss
data_loader = self._train_dataset.dataloader # get the data loader
weight_all = torch.tensor([]).to(torch.float32)
x_true = torch.tensor([]).to(torch.float32)
y_true = torch.tensor([]).to(torch.float32)
y_pred = torch.tensor([]).to(torch.float32)
for index, (data, coef, label, data_index) in enumerate(data_loader):
# move the data to gpu
device = torch.device('cuda') if self._use_gpu else torch.device('cpu')
data, coef, label = data.to(device), coef.to(device), label.to(device)
weight_all, x_true, y_true, y_pred = weight_all.to(device), x_true.to(device), y_true.to(device), y_pred.to(
device)
self._optimizer.zero_grad() # zero the gradient
if self._optimizer_name == "Adagrad":
# move optimizer state to gpu
for state in self._optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
x_true = torch.cat((x_true, coef), 0)
y_true = torch.cat((y_true, label), 0)
weight = self._model(data)
weight_all = torch.cat((weight_all, weight.mul(torch.tensor(self._weight).to(torch.float32).to(device))), 0)
output = self._out(weight.mul(coef.to(torch.float32)))
y_pred = torch.cat((y_pred, output), 0)
loss = self._criterion(output, label) # calculate the loss
loss.backward() # back propagation
self._optimizer.step() # update the parameters
if isinstance(data, list):
train_loss += loss.item() * data[0].size(0)
else:
train_loss += loss.item() * data.size(0) # accumulate the loss
self._train_diagnosis = DIAGNOSIS(weight_all, x_true, y_true, y_pred)
train_loss /= self._train_dataset.datasize # calculate the average loss
self._trainLossList.append(train_loss) # record the loss
def __valid(self):
"""
validate the network
"""
self._model.eval() # set the model to validation mode
val_loss = 0 # initialize the loss
label_list = np.array([]) # label list
out_list = np.array([]) # output list
data_loader = self._valid_dataset.dataloader # get the data loader
with torch.no_grad(): # disable gradient calculation
for data, coef, label, data_index in data_loader:
device = torch.device('cuda') if self._use_gpu else torch.device('cpu')
data, coef, label = data.to(device), coef.to(device), label.to(device)
# weight = self._model(data)
output = self._out(self._model(
data).mul(coef.to(torch.float32)))
loss = self._criterion(output, label) # calculate the loss
out_list = np.append(
out_list, output.view(-1).cpu().detach().numpy()) # add the output to the list
label_list = np.append(
label_list, label.view(-1).cpu().numpy()) # add the label to the list
if isinstance(data, list):
val_loss += loss.item() * data[0].size(0)
else:
val_loss += loss.item() * data.size(0) # accumulate the loss
val_loss /= len(self._valid_dataset) # calculate the average loss
self._validLossList.append(val_loss) # record the loss
try:
r2 = r2_score(label_list, out_list) # calculate the R square
except:
print(label_list)
print(out_list)
self._valid_r2 = r2
if r2 > self._bestr2:
# if the R square is better than the best R square,record the R square and save the model
self._bestr2 = r2
self._besttrainr2 = self._train_diagnosis.R2().data
self._noUpdateEpoch = 0
if not os.path.exists(self._modelSavePath):
os.mkdir(self._modelSavePath)
torch.save(self._model, self._modelSavePath + '/' + self._modelName + ".pkl")
else:
self._noUpdateEpoch += 1
def __test(self):
"""
test the network
"""
self._model.eval()
test_loss = 0
label_list = np.array([])
out_list = np.array([])
data_loader = self._test_dataset.dataloader
x_data = torch.tensor([]).to(torch.float32)
y_data = torch.tensor([]).to(torch.float32)
y_pred = torch.tensor([]).to(torch.float32)
weight_all = torch.tensor([]).to(torch.float32)
with torch.no_grad():
for data, coef, label, data_index in data_loader:
device = torch.device('cuda') if self._use_gpu else torch.device('cpu')
data, coef, label = data.to(device), coef.to(device), label.to(device)
x_data, y_data, y_pred, weight_all = x_data.to(device), y_data.to(device), y_pred.to(
device), weight_all.to(device)
# data,label = data.view(data.shape[0],-1),label.view(data.shape[0],-1)
x_data = torch.cat((x_data, coef), 0)
y_data = torch.cat((y_data, label), 0)
weight = self._model(data)
weight_all = torch.cat(
(weight_all, weight.mul(torch.tensor(self._weight).to(torch.float32).to(device))), 0)
output = self._out(self._model(data).mul(coef.to(torch.float32)))
y_pred = torch.cat((y_pred, output), 0)
loss = self._criterion(output, label)
out_list = np.append(
out_list, output.view(-1).cpu().detach().numpy()) # add the output to the list
label_list = np.append(
label_list, label.view(-1).cpu().numpy()) # add the label to the list
if isinstance(data, list):
test_loss += loss.item() * data[0].size(0)
else:
test_loss += loss.item() * data.size(0) # accumulate the loss
test_loss /= len(self._test_dataset)
self.__testLoss = test_loss
self.__testr2 = r2_score(label_list, out_list)
self._test_diagnosis = DIAGNOSIS(weight_all, x_data, y_data, y_pred)
[docs]
def run(self, max_epoch=1, early_stop=-1, print_frequency=50, show_detailed_info=True):
"""
train the model and validate the model
Parameters
----------
max_epoch : int
the max epoch of the training (default: ``1``)
early_stop : int
if the model has not been updated for ``early_stop`` epochs, the training will stop (default: ``-1``)
if ``early_stop`` is ``-1``, the training will not stop until the max epoch
print_frequency : int
the frequency of printing the information (default: ``50``)
"""
self.__istrained = True
if self._use_gpu:
self._model = nn.DataParallel(module=self._model) # parallel computing
self._model = self._model.cuda()
self._out = self._out.cuda()
# create file
if not os.path.exists(self._log_path):
os.mkdir(self._log_path)
file_str = self._log_path + self._log_file_name
logging.basicConfig(format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s',
filename=file_str, level=logging.INFO)
for epoch in trange(0, max_epoch):
self._epoch = epoch
# train the network
# record the information of the training process
self.__train()
# validate the network
# record the information of the validation process
self.__valid()
# out put log every {print_frequency} epoch:
if (epoch + 1) % print_frequency == 0:
if show_detailed_info:
print("\nEpoch: ", epoch + 1)
print("learning rate: ", self._optimizer.param_groups[0]['lr'])
print("Train Loss: ", self._trainLossList[-1])
print("Train R2: {:.5f}".format(self._train_diagnosis.R2().data))
print("Train RMSE: {:.5f}".format(self._train_diagnosis.RMSE().data))
print("Train AIC: {:.5f}".format(self._train_diagnosis.AIC()))
print("Train AICc: {:.5f}".format(self._train_diagnosis.AICc()))
print("Valid Loss: ", self._validLossList[-1])
print("Valid R2: {:.5f}".format(self._valid_r2), "\n")
print("Best R2: {:.5f}".format(self._bestr2), "\n")
else:
print("\nEpoch: ", epoch + 1)
print(
"Train R2: {:.5f} Valid R2: {:.5f} Best R2: {:.5f}\n".format(self._train_diagnosis.R2().data,
self._valid_r2, self._bestr2))
self._scheduler.step() # update the learning rate
# tensorboard
self._writer.add_scalar('Training/Learning Rate', self._optimizer.param_groups[0]['lr'], self._epoch)
self._writer.add_scalar('Training/Loss', self._trainLossList[-1], self._epoch)
self._writer.add_scalar('Training/R2', self._train_diagnosis.R2().data, self._epoch)
self._writer.add_scalar('Training/RMSE', self._train_diagnosis.RMSE().data, self._epoch)
self._writer.add_scalar('Training/AIC', self._train_diagnosis.AIC(), self._epoch)
self._writer.add_scalar('Training/AICc', self._train_diagnosis.AICc(), self._epoch)
self._writer.add_scalar('Validation/Loss', self._validLossList[-1], self._epoch)
self._writer.add_scalar('Validation/R2', self._valid_r2, self._epoch)
self._writer.add_scalar('Validation/Best R2', self._bestr2, self._epoch)
# log output
log_str = "Epoch: " + str(epoch + 1) + \
"; Train Loss: " + str(self._trainLossList[-1]) + \
"; Train R2: {:5f}".format(self._train_diagnosis.R2().data) + \
"; Train RMSE: {:5f}".format(self._train_diagnosis.RMSE().data) + \
"; Train AIC: {:5f}".format(self._train_diagnosis.AIC()) + \
"; Train AICc: {:5f}".format(self._train_diagnosis.AICc()) + \
"; Valid Loss: " + str(self._validLossList[-1]) + \
"; Valid R2: " + str(self._valid_r2) + \
"; Learning Rate: " + str(self._optimizer.param_groups[0]['lr'])
logging.info(log_str)
if 0 < early_stop < self._noUpdateEpoch: # stop when the model has not been updated for long time
print("Training stop! Model has not been improved for over {} epochs.".format(early_stop))
break
self.load_model(self._modelSavePath + '/' + self._modelName + ".pkl")
self.result_data = self.getWeights()
print("Best_r2:", self._bestr2)
[docs]
def predict(self, dataset):
"""
predict the result of the dataset
Parameters
----------
dataset : baseDataset,predictDataset
the dataset to be predicted
Returns
-------
dataframe
the Pandas dataframe of the dataset with the predicted result
"""
data_loader = dataset.dataloader
if not self.__istrained:
print("WARNING! The model hasn't been trained or loaded!")
self._model.eval()
result = np.array([])
with torch.no_grad():
for data, coef in data_loader:
if self._use_gpu:
data, coef = data.cuda(), coef.cuda()
output = self._out(self._model(data).mul(coef.to(torch.float32)))
output = output.view(-1).cpu().detach().numpy()
result = np.append(result, output)
dataset.dataframe['pred_result'] = result
dataset.pred_result = result
return dataset.dataframe
[docs]
def predict_weight(self, dataset):
"""
predict the spatial weight of the dataset
Parameters
----------
dataset : baseDataset,predictDataset
the dataset to be predicted
Returns
-------
dataframe
the Pandas dataframe of the dataset with the predicted spatial weight
"""
data_loader = dataset.dataloader
if not self.__istrained:
print("WARNING! The model hasn't been trained or loaded!")
self._model.eval()
result = torch.tensor([]).to(torch.float32)
with torch.no_grad():
for data, coef in data_loader:
if self._use_gpu:
result, data, coef = result.cuda(), data.cuda(), coef.cuda()
ols_w = torch.tensor(self._weight).to(torch.float32).cuda()
weight = self._model(data).mul(ols_w)
result = torch.cat((result, weight), 0)
result = result.cpu().detach().numpy()
return result
[docs]
def load_model(self, path, use_dict=False, map_location=None):
"""
load the model
Parameters
----------
path : str
the path of the model
use_dict : bool
whether use dict to load the model (default: ``False``)
map_location : str
the location of the model (default: ``None``)
the location can be ``"cpu"`` or ``"cuda"``
"""
if use_dict:
data = torch.load(path, map_location=map_location)
self._model.load_state_dict(data)
else:
self._model = torch.load(path, map_location=map_location)
if self._use_gpu:
self._model = self._model.cuda()
else:
self._model = self._model.cpu()
self.__istrained = True
[docs]
def gpumodel_to_cpu(self, path, save_path, use_model=True):
"""
convert gpu model to cpu model
Parameters
----------
path : str
the path of the model
save_path : str
the path of the new model
use_model : bool
whether use dict to load the model (default: ``True``)
"""
if use_model:
data = torch.load(path, map_location='cpu').state_dict()
else:
data = torch.load(path, map_location='cpu')
new_state_dict = OrderedDict()
for k, v in data.items():
name = k[7:] # remove module.
new_state_dict[name] = v
torch.save(new_state_dict, save_path)
[docs]
def getLoss(self):
"""
get network's loss
Returns
-------
list
the list of the loss in training process and validation process
"""
return self._trainLossList, self._validLossList
[docs]
def add_graph(self):
"""
add the graph of the model to tensorboard
"""
for data, coef, label, data_index in self._train_dataset.dataloader:
if self._use_gpu:
data = data.cuda()
self._model = self._model.cuda()
else:
self._model = self._model.cpu()
data = data.cpu()
self._writer.add_graph(self._model, data)
break
print("Add Graph Successfully")
[docs]
def result(self, path=None, use_dict=False, map_location=None):
"""
print the result of the model, including the model structure, optimizer,the result of test dataset
Parameters
----------
path : str
the path of the model(default: ``None``)
| if ``path`` is ``None``, the model will be loaded from ``self._modelSavePath + "/" + self._modelName + ".pkl"``
use_dict : bool
whether use dict to load the model (default: ``False``)
| if ``use_dict`` is ``True``, the model will be loaded from ``path`` as dict
map_location : str
the location of the model (default: ``None``)
the location can be ``"cpu"`` or ``"cuda"``
"""
# load model
if not self.__istrained:
raise Exception("The model hasn't been trained or loaded!")
if path is None:
path = self._modelSavePath + "/" + self._modelName + ".pkl"
if use_dict:
data = torch.load(path, map_location=map_location)
self._model.load_state_dict(data)
else:
self._model = torch.load(path, map_location=map_location)
if self._use_gpu:
self._model = nn.DataParallel(module=self._model) # parallel computing
self._model = self._model.cuda()
self._out = self._out.cuda()
else:
self._model = self._model.cpu()
self._out = self._out.cpu()
with torch.no_grad():
self.__test()
logging.info("Test Loss: " + str(self.__testLoss) + "; Test R2: " + str(self.__testr2))
# print result
# basic information
print("--------------------Result Table--------------------\n")
print("Model Name: |", self._modelName)
print("Model Structure: |\n", self._model)
print("Optimizer: |\n", self._optimizer)
print("independent variable: |", self._train_dataset.x)
print("dependent variable: |", self._train_dataset.y)
print("\n----------------------------------------------------\n")
print("Test Loss: ", self.__testLoss, " Test R2: ", self.__testr2)
if self._valid_r2 is not None and self._valid_r2 != float('-inf'):
print("Train R2: {:5f}".format(self._besttrainr2), " Valid R2: ", self._bestr2)
# OLS
print("\nOLS: |", self._weight)
# Diagnostics
print("R2: |", self.__testr2)
print("RMSE: | {:5f}".format(self._test_diagnosis.RMSE().data))
print("AIC: | {:5f}".format(self._test_diagnosis.AIC()))
print("AICc: | {:5f}".format(self._test_diagnosis.AICc()))
print("F1: | {:5f}".format(self._test_diagnosis.F1_GNN().data))
[docs]
def reg_result(self, filename=None, model_path=None, use_dict=False, only_return=False, map_location=None):
"""
save the regression result of the model, including the weight of each argument, the bias, the predicted result
Parameters
----------
filename : str
the path of the result file (default: ``None``)
| if ``filename`` is ``None``, the result will not be saved as file
model_path : str
the path of the model (default: ``None``)
| if ``model_path`` is ``None``, the model will be loaded from ``self._modelSavePath + "/" + self._modelName + ".pkl"``
use_dict : bool
whether use dict to load the model (default: ``False``)
| if ``use_dict`` is ``True``, the model will be loaded from ``model_path`` as dict
only_return : bool
whether only return the result (default: ``False``)
| if ``only_return`` is ``True``, the result will not be saved as file
map_location : str
the location of the model (default: ``None``)
the location can be ``"cpu"`` or ``"cuda"``
Returns
-------
dataframe
the Pandas dataframe of the result
"""
if model_path is None:
model_path = self._modelSavePath + "/" + self._modelName + ".pkl"
if use_dict:
data = torch.load(model_path, map_location=map_location)
self._model.load_state_dict(data)
else:
self._model = torch.load(model_path, map_location=map_location)
if self._use_gpu:
self._model = nn.DataParallel(module=self._model)
self._model = self._model.cuda()
self._out = self._out.cuda()
else:
self._model = self._model.cpu()
self._out = self._out.cpu()
device = torch.device('cuda') if self._use_gpu else torch.device('cpu')
result = torch.tensor([]).to(torch.float32).to(device)
with torch.no_grad():
for data, coef, label, data_index in self._train_dataset.dataloader:
data, coef, label, data_index = data.to(device), coef.to(device), label.to(device), data_index.to(device)
output = self._out(self._model(data).mul(coef.to(torch.float32)))
weight = self._model(data).mul(torch.tensor(self._weight).to(torch.float32).to(device))
output = torch.cat((weight, output, data_index), dim=1)
result = torch.cat((result, output), 0)
for data, coef, label, data_index in self._valid_dataset.dataloader:
data, coef, label, data_index = data.to(device), coef.to(device), label.to(device), data_index.to(device)
output = self._out(self._model(data).mul(coef.to(torch.float32)))
weight = self._model(data).mul(torch.tensor(self._weight).to(torch.float32).to(device))
output = torch.cat((weight, output, data_index), dim=1)
result = torch.cat((result, output), 0)
for data, coef, label, data_index in self._test_dataset.dataloader:
data, coef, label, data_index = data.to(device), coef.to(device), label.to(device), data_index.to(device)
output = self._out(self._model(data).mul(coef.to(torch.float32)))
weight = self._model(data).mul(torch.tensor(self._weight).to(torch.float32).to(device))
output = torch.cat((weight, output, data_index), dim=1)
result = torch.cat((result, output), 0)
result = result.cpu().detach().numpy()
columns = list(self._train_dataset.x)
for i in range(len(columns)):
columns[i] = "weight_" + columns[i]
columns.append("bias")
columns = columns + ["Pred_" + self._train_dataset.y[0]] + self._train_dataset.id
result = pd.DataFrame(result, columns=columns)
result[self._train_dataset.id] = result[self._train_dataset.id].astype(np.int32)
if only_return:
return result
if filename is not None:
result.to_csv(filename, index=False)
else:
warnings.warn(
"Warning! The input write file path is not set. Result is returned by function but not saved as file.",
RuntimeWarning)
return result
[docs]
def getWeights(self):
"""
get weight of each argument
Returns
-------
dataframe
the Pandas dataframe of the weight of each argument in train_dataset
"""
result_data = self.reg_result(only_return=True)
result_data['id'] = result_data['id'].astype(np.int64)
data = pd.concat([self._train_dataset.dataframe, self._valid_dataset.dataframe, self._test_dataset.dataframe])
data.set_index('id', inplace=True)
result_data.set_index('id', inplace=True)
result_data = result_data.join(data)
return result_data
[docs]
class GTNNWR(GNNWR):
"""
GTNNWR model is a model based on GNNWR and STPNN, which is a model that can be used to solve the problem of
spatial-temporal non-stationarity.
Parameters
----------
train_dataset : baseDataset
the dataset for training
valid_dataset : baseDataset
the dataset for validation
test_dataset : baseDataset
the dataset for test
dense_layers : list
the dense layers of the model (default: ``None``)
| i.e. ``[[3],[128,64,32]]`` the first list in input is hidden layers of STPNN, the second one is hidden layers of SWNN.
start_lr : float
the start learning rate (default: ``0.1``)
optimizer : str, optional
the optimizer of the model (default: ``"Adagrad"``)
choose from "SGD","Adam","RMSprop","Adagrad","Adadelta"
drop_out : float
the drop out rate of the model (default: ``0.2``)
batch_norm : bool, optional
whether use batch normalization (default: ``True``)
activate_func : torch.nn
the activate function of the model (default: ``nn.PReLU(init=0.4)``)
model_name : str
the name of the model (default: ``"GNNWR_" + datetime.datetime.today().strftime("%Y%m%d-%H%M%S")``)
model_save_path : str
the path of the model (default: ``"../gnnwr_models"``)
write_path : str
the path of the log (default: ``"../gnnwr_runs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")``)
use_gpu : bool
whether use gpu or not (default: ``True``)
use_ols : bool
whether use ols or not (default: ``True``)
log_path : str
the path of the log (default: ``"../gnnwr_logs/"``)
log_file_name : str
the name of the log (default: ``"gnnwr" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + ".log"``)
log_level : int
the level of the log (default: ``logging.INFO``)
optimizer_params : dict, optional
the params of the optimizer and the scheduler (default: ``None``)
if optimizer is SGD, the params are:
| maxlr: float, the max learning rate (default: ``0.1``)
| minlr: float, the min learning rate (default: ``0.01``)
| upepoch: int, the epoch of learning rate up (default: ``10000``)
| decayepoch: int, the epoch of learning rate decay (default: ``20000``)
| decayrate: float, the rate of learning rate decay (default: ``0.1``)
| stop_change_epoch: int, the epoch of learning rate stop change (default: ``30000``)
| stop_lr: float, the learning rate when stop change (default: ``0.001``)
if optimizer is Other, the params are:
| scheduler: str, the name of the scheduler (default: ``"CosineAnnealingWarmRestarts"``) in {``"MultiStepLR","CosineAnnealingLR","CosineAnnealingWarmRestarts"``}
| scheduler_milestones: list, the milestones of the scheduler MultiStepLR (default: ``[500,1000,2000,4000]``)
| scheduler_gamma: float, the gamma of the scheduler MultiStepLR (default: ``0.5``)
| scheduler_T_max: int, the T_max of the scheduler CosineAnnealingLR (default: ``1000``)
| scheduler_eta_min: float, the eta_min of the scheduler CosineAnnealingLR and CosineAnnealingWarmRestarts (default: ``0.01``)
| scheduler_T_0: int, the T_0 of the scheduler CosineAnnealingWarmRestarts (default: ``100``)
| scheduler_T_mult: int, the T_mult of the scheduler CosineAnnealingWarmRestarts (default: ``3``)
STPNN_outsize:int
the output size of STPNN(default:``1``)
STNN_SPNN_params:dict
the params of STNN and SPNN(default:``None``)
STPNN_batch_norm:bool
whether use batchnorm in STNN and SPNN or not (Default:``True``)
"""
def __init__(self,
train_dataset,
valid_dataset,
test_dataset,
dense_layers=None,
start_lr: float = .1,
optimizer="Adam",
drop_out=0.2,
batch_norm=True,
activate_func=nn.PReLU(init=0.4),
model_name="GTNNWR_" + datetime.datetime.today().strftime("%Y%m%d-%H%M%S"),
model_save_path="../gtnnwr_models",
write_path="../gtnnwr_runs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
use_gpu: bool = True,
use_ols: bool = True,
log_path: str = "../gtnnwr_logs/",
log_file_name: str = "gtnnwr" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + ".log",
log_level: int = logging.INFO,
optimizer_params=None,
STPNN_outsize=1,
STNN_SPNN_params=None,
):
if optimizer_params is None:
optimizer_params = {'scheduler': 'MultiStepLR', 'scheduler_milestones': [100, 300, 500]}
if dense_layers is None:
dense_layers = [[], []]
super(GTNNWR, self).__init__(train_dataset, valid_dataset, test_dataset, dense_layers[1], start_lr, optimizer,
drop_out, batch_norm, activate_func, model_name, model_save_path, write_path,
use_gpu, use_ols, log_path, log_file_name, log_level, optimizer_params)
self._STPNN_out = STPNN_outsize
self._modelName = model_name # model name
if train_dataset.simple_distance:
insize = 2
else:
insize = train_dataset.distances.shape[-1]
if STNN_SPNN_params is None:
STNN_SPNN_params = dict()
self.STNN_outsize = STNN_SPNN_params.get("STNN_outsize", 1)
self.SPNN_outsize = STNN_SPNN_params.get("SPNN_outsize", 1)
self.STPNN_batch_norm = STNN_SPNN_params.get("STPNN_batch_norm", True)
if train_dataset.is_need_STNN:
self._model = nn.Sequential(STNN_SPNN(train_dataset.temporal.shape[-1], self.STNN_outsize,
train_dataset.distances.shape[-1], self.SPNN_outsize),
STPNN(dense_layers[0], self.STNN_outsize + self.SPNN_outsize,
self._STPNN_out, drop_out, batch_norm=self.STPNN_batch_norm),
SWNN(dense_layers[1], self._STPNN_out * self._insize, self._outsize, drop_out,
activate_func, batch_norm))
else:
self._model = nn.Sequential(STPNN(dense_layers[0], insize, self._STPNN_out, drop_out,
batch_norm=self.STPNN_batch_norm),
SWNN(dense_layers[1], self._STPNN_out * self._insize, self._outsize, drop_out,
activate_func, batch_norm))
self.init_optimizer(optimizer, optimizer_params)